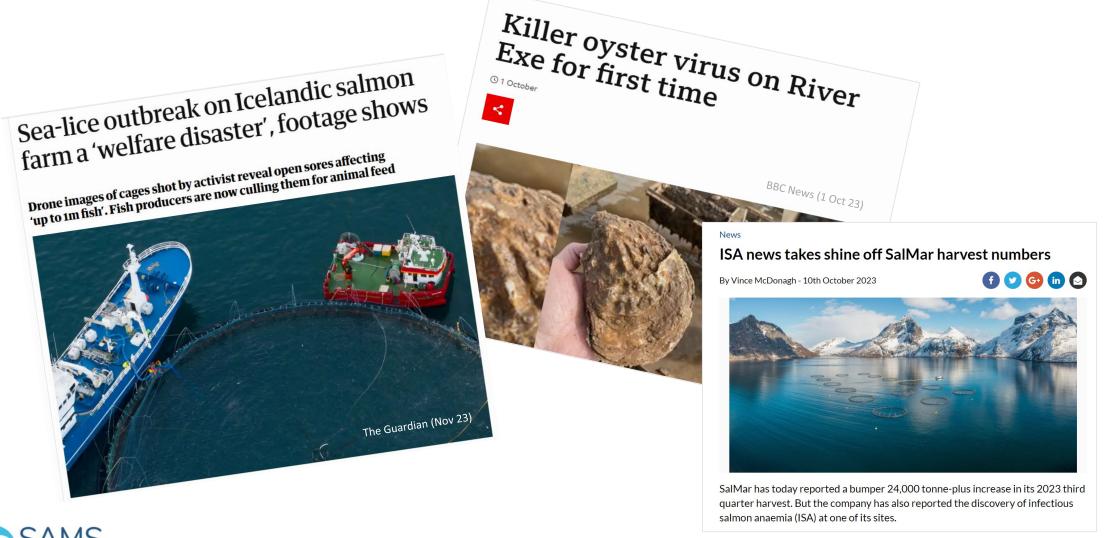
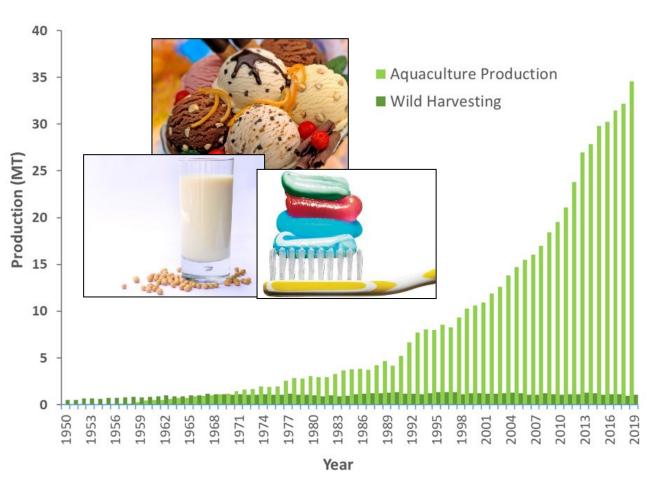


SEAWEED BIOSECURITY


Prof Elizabeth J Cottier-Cook

Scottish Association for Marine Science ejc@sams.ac.uk

The importance of biosecurity...



The importance of seaweed...

US\$14.7bn

95% in low to middle income countries

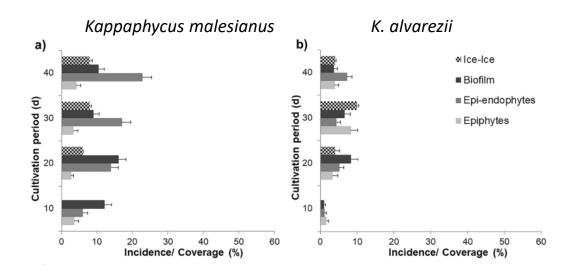
6M+ farmers globally

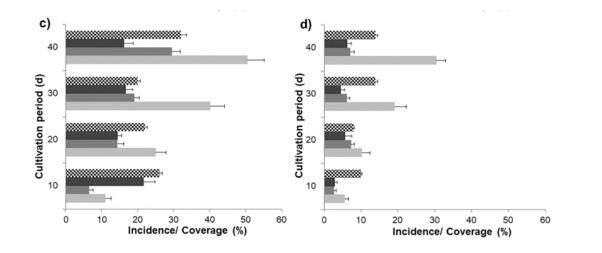
Major biosecurity-related challenges facing the seaweed industry

Occurrence of ice-ice syndrome and pests – led to significant losses of production globally

having major socio-economic impacts on the communities reliant on seaweed production

Managing Pests and Disease


Biosecurity measure	BTF	NBTF
1. Propagules treatment	 Visually health checked for thallus bleached, wounds, epiphytes/epi-endophytes, biofilm, fouling organisms, waste material attached at the preparation, grow-out and harvest Only used the propagules with healthy sign, many shoot tips and visually cleaned from pests attached Source of propagules known 	 ○ Visually health checked for the propagules was randomly carried out in the preparation process only. ○ Initial propagule used as BTF ○ Source of propagules known
2. Farm equipment treatment	 Newly purchased ropes (anchor ropes, planting ropes and tying ropes) The boat was cleaned and sun-dried before use. 	O As BTF
3. Cleaning treatment	 Epiphytes/epi-endophytes, biofilm, fouling and all waste attached were carefully removed manually from the crop and the ropes (using tissue paper or soft fabrics). Bleached/discoloured thallus removed from the farm by cutting the bleached thallus apart 	 Seaweed crops and ropes were left uncleaned. Bleached/discoloured thallus was fragmented naturally without maintenance.
4. Farm waste treatment	O All bleached/discoloured thallus, epiphytes/epi- endophytes, biofilm and all waste materials were gathered and disposed landfill, and avoided to throw within farm area.	O No measure in maintaining the farm wastes included the bleached/discoloured thallus and the pests attached
5. Environment monitor	O Physical environmental parameters were measured at the beginning of the experiment and regularly throughout the grow-out phase within 3–4 days.	O As BTF
6. Monitoring and evaluation	 Every 2 days for cleaning and removing pests, bleached, and checking the health status of crops Every 10 days for measuring the growth, pests coverage and ice-ice incidence 	 Measuring the growth, pests coverage and ice-ice incidence as BTF No cleaning, removing and checking health of crops


Managing Pests and Disease

BIOSECURITY TREATED FARM

NO TREATMENT

K. malesianus - Bleaching

Managing Pests and Disease – Risk Components

Components	Risk	
Crop/seedling	Pathogen infected crop (indicated visually by a bleached /discoloured thallus)	
	 EFA infestation Low disease-resistant strains being propagated Traceability 	
Farm equipment	 Unclean, non-disinfected equipment (ropes, boat hulls, buoys) Weak rope ties 	
Work platform	 Crop condition (e.g., dehydrated before planting, wounded and contaminated with pathogens) 	
Environment	High temperature, low salinity, high turbidity, low water movement/ current, high irradiance, pollution	
	Inappropriate site location	

Managing Pests and Disease – SOP at a glance

Preparation process:

- ✓ Know your seedling source
- ✓ Check initial condition of the seedling
- Environmental factors are optimal for growing seaweed
- ✓ All farm equipment is cleaned and disinfected
- ✓ No reuse of infected crop

Grow-out process:

- ✓ Detect signs of diseases by regular crop checking
- ✓ Prevent diseases by removing the any infected crop
- ✓ Manage the farm risks via appropriate measures (crop separation, crop density, farm waste disposal)
- ✓ Monitor the farm system closely with regularly visits to the farm

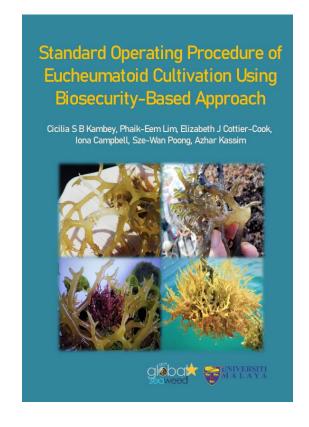
Harvest & Post-harvest processes:

- ✓ Careful handling of the seaweeds during harvest and use of suitable drying techniques
- ✓ Do not dry the infected crop together with the healthy crop
- ✓ Dispose of the infected crop and farm wastes in landfill
- ✓ Clean and disinfect the farm equipment after use

Government control and monitoring:

- ✓ Regular monitoring of farms through random farm site visits
- ✓ Proactive mitigation of farm outbreaks
- ✓ Record the farm outbreaks for evaluation
- ✓ Build an effective monitoring and reporting system

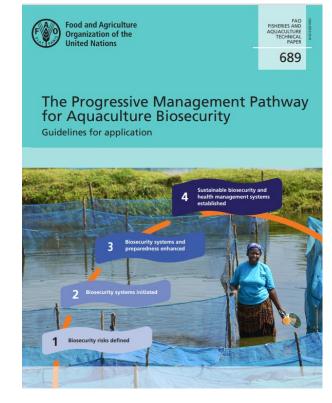
SEAWEED BIOSECURITY RESOURCES



Seaweed Farm Standard

Issue 1.0 DD-MONTH-YEAR

Best Aquaculture Practices Certification Standard
Environmental Responsibility · Social Responsibility · Food Safety · Animal Health and Welfare



Farm Management and Biosecurity Measures of Eucheumatoids: Cultivars, Pest and Diseases, Risks and Risk Managements

Jonalyn P. Mateo
Joseph P. Faisan, Jr.
Rema C. Sibonga
Jee Grace B. Suyo
Maria Rovilla J. Luhan
Victor Marco Emmanuel N. Ferriols
Anicia O. Hurtado

https://doi.org/10.1038/s41467-022-34783-8

A new Progressive Management Pathway for improving seaweed biosecurity

Elizabeth J. Cottier-Cook, Jennefe P. Cabarubias, Janina Brakel, Juliet Brodie, Alejandro H. Buschmann, Iona Campbell, Alan T. Critchley, Chad L. Hewitt, Jie Huang, Anicia Q. Hurtado, Cicilia S. B. Kambey, Phaik Eem Lim, Tao Liu, Jonalyn P. Mateo, Flower E. Msuya, Zizhong Qi, Louise Shaxson, Grant D. Stentiford & Melba G. Bondad-Reantaso

www.globalseaweed.org

